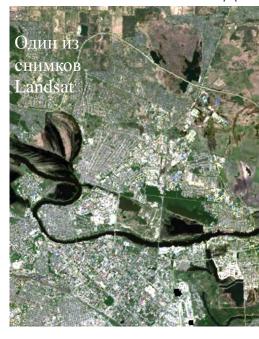
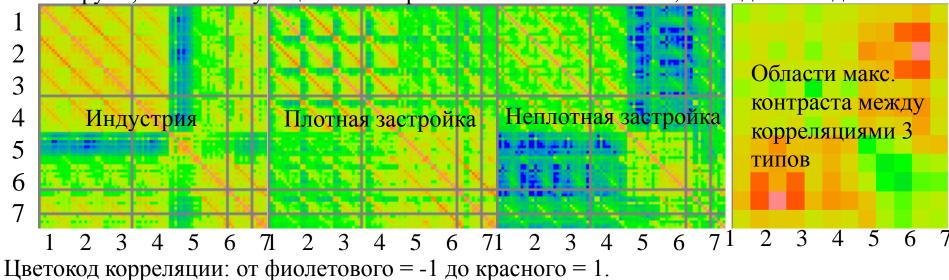
Распознавание категорий наземных объектов на основе корреляционных

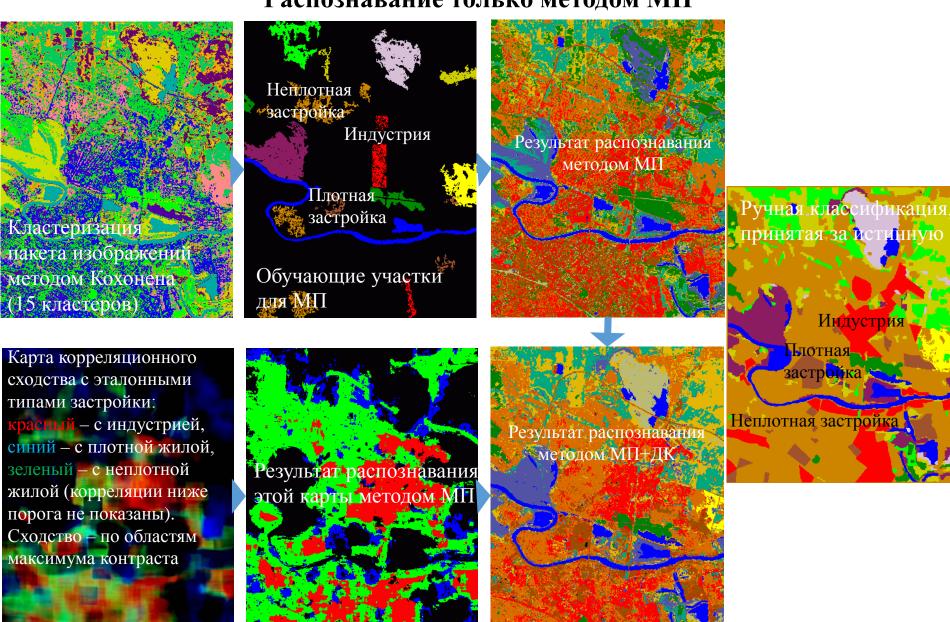

портретов с применением в модели рассеяния атмосферных загрязнений

Б.М. Балтер, В.В. Егоров, В.А. Котцов, М.В. Фаминская

Описан метод распознавания эталонных объектов в многоспектральных и гиперспектральных данных дистанционного аэрокосмического зондирования Земли. Метод основан на вычислении межканальных корреляционных матриц и последующем корреляционном сравнении их с аналогичными матрицами эталонных объектов (так называемая двойная корреляция, ДК). Распознавание наземных объектов проводится по максимуму двойной корреляции с эталонами. Поскольку метод чувствителен к пространственной структуре участков, для которых строятся корреляционные портреты, он является естественным дополнением к методам классификации, ориентированным только на средние спектральные показатели, таким, как метод максимума правдоподобия (МП). Мы описываем совместное с МП применение в задаче распознавания категорий объектов поверхности, существенных для моделирования рассеяния атмосферных загрязнений, на основе многолетних данных Landsat, организованных в подобие гиперспектральной структуры. Рассчитаны вероятности распознавания и ложной тревоги и другие рабочие характеристики. Эффект ДК, измеренный по рабочим кривым для трех наиболее проблемных для различения категорий в задаче рассеяния загрязнений (индустрия, плотная и неплотная жилая застройка) составляет от 2% до 14% по сумме ошибок 1 и 2 рода. Соответствующий эффект применения ДК к одной реальной задаче рассеяния индустриальных загрязнений – от 2% до 3% по максимальным почасовым концентрациям в 18 районах города (в одном районе эффект отрицательный) и до 30% на отдельные даты по тем же районам (для некоторых дат эффект отрицательный).



Исходные данные

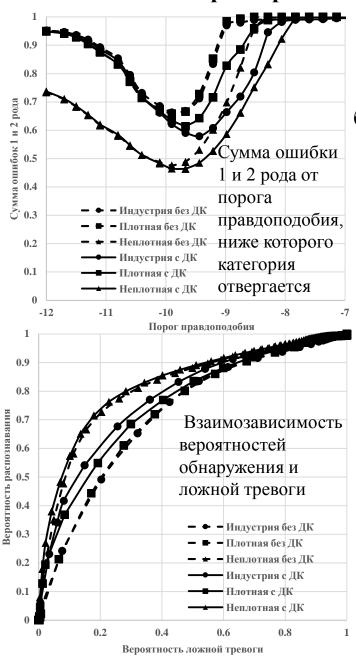


Корреляционные портреты эталонов, соответствующих разным типам застройки 7 групп, соответствующих 7 спектральным каналам Landsat, в каждой – 14 дат съемки.

Цветокод величины контраста относительно максимума: фиолетовый = $0 \rightarrow$ красный = 1

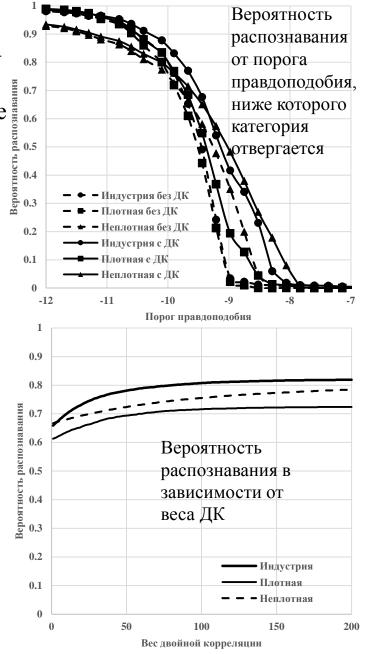
Распознавание только методом МП

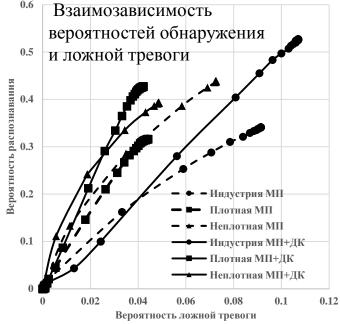
Распознавание комбинированным методом МП+ДК


Распознавание методом опорных векторов (SVM) – рабочие характеристики Без двойной корреляции

Вероятность обнаружения каждой из 10 категорий в зависимости от порога правдоподобия, ниже которого категория отвергается (каждая кривая – без учета других категорий)

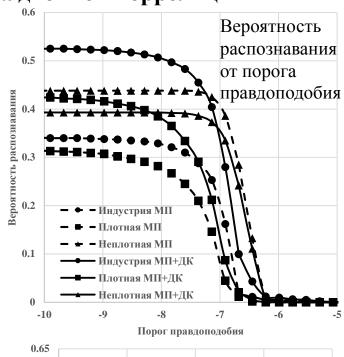
Взаимозависимость вероятностей обнаружения и ложной тревоги (каждая кривая – с учетом всех категорий)

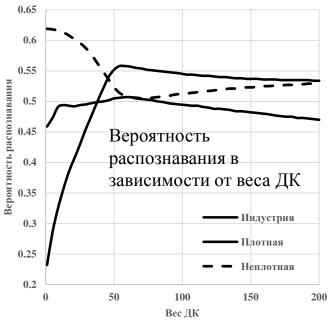

Распознавание методом МП с двойной корреляцией и без. *Изолированные классы* Рабочие характеристики и зависимость от веса двойной корреляции


Сплошные кривые – с ДК, пунктирные – без ДК. 3 проблемные категории: типы застройки. При оптимальном пороге правдоподобия, соответствующем типу застройки (между -9 и -10), вариант с ДК лучше, чем без ДК. Вариация порога правдоподобия проводится для каждого рассматриваемого класса изолированно, без учета конкуренции

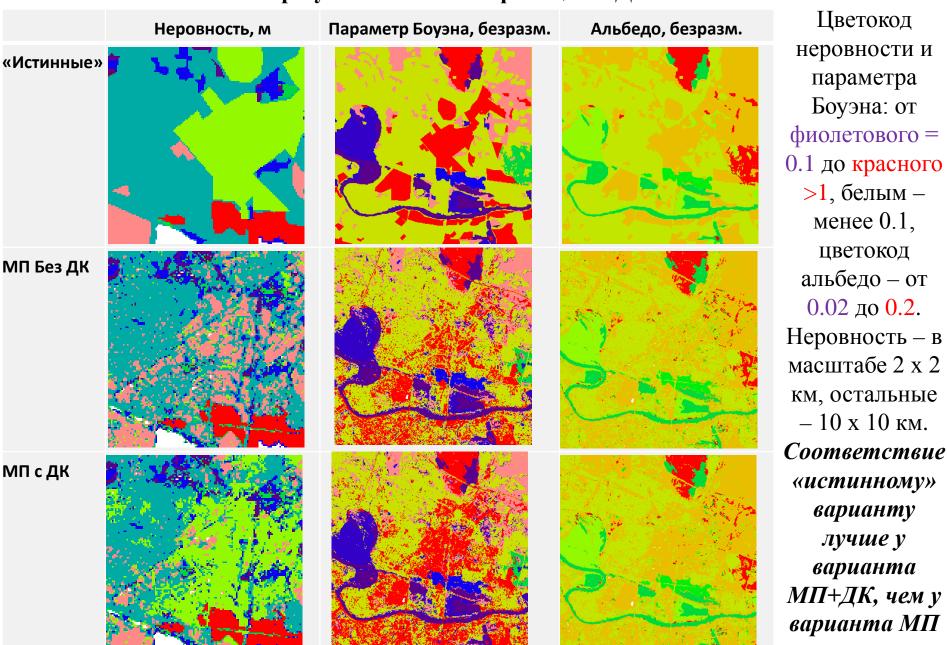
с другими классами в

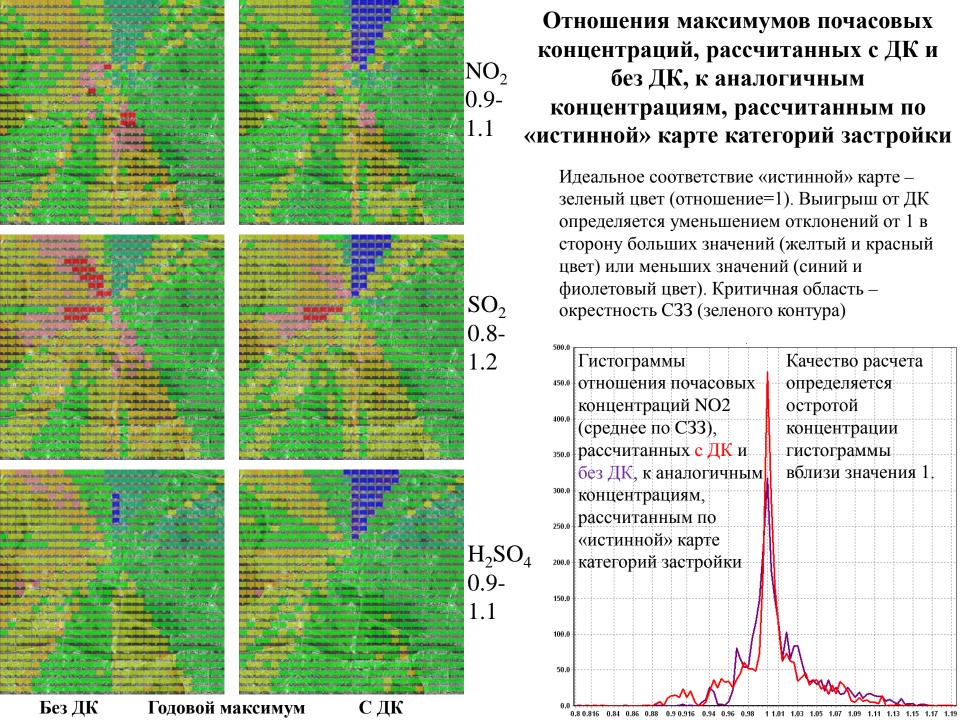
классификации.


Распознавание методом МП с двойной корреляцией и без. *Конкурирующие классы* Рабочие характеристики и зависимость от веса двойной корреляции



Сплошные кривые – с ДК, пунктирные – без ДК. 3 проблемные категории: типы застройки.


Оптимальный вес ДК разный для разных категорий, выбор веса определяется балансом важности категорий.


Рабочие кривые для каждой категории — с учетом воздействия всех остальных. За счет конкуренции категорий вероятность распознавания снижается по сравнению с изолированным случаем, так что рабочие кривые не доходят до вероятности 1.

Оценка параметров поверхности, влияющих на рассеяние загрязнений. По результатам классификации с ДК и без

Выигрыш от применения ДК в оценке максимальных почасовых концентраций SO2

Район	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Среднее
	а) Разность максимальных за год почасовых концентраций без ДК и с ДК, максимум по району															7			
Выигрыш	0.031	0.017	0.025	0.034	0.029	0.021	0.002	0.026	0.026	0.022	-0.05	0.002	0	0.024	0.021	0.024	0.031	0.006	0.02
	б) Максимальная за год разность почасовых концентраций без ДК и с ДК, максимум по району															ıy			
Выигрыш	0.25	0.22	0.22	0.38	0.18	0.21	0.13	0.2	0.2	0.28	0.48	0.58	0.61	0.6	0.5	0.38	0.47	0.32	0.35
Проигрыш	0.12	0.1	0.1	0.1	0.09	0.13	0.1	0.1	0.1	0.25	0.48	0.29	0.5	0.5	0.5	0.33	0.25	0.22	0.24
Разность	0.13	0.12	0.12	0.28	0.09	0.08	0.03	0.1	0.1	0.03	0	0.29	0.11	0.1	0	0.05	0.22	0.1	0.11
	в) Максимальная за год разность почасовых концентраций без ДК и с ДК, среднее по району																		
Выигрыш	0.2	0.15	0.17	0.26	0.18	0.18	0.13	0.2	0.2	0.16	0.21	0.26	0.33	0.36	0.35	0.21	0.2	0.2	0.22
Проигрыш	0.11	0.1	0.1	0.1	0.09	0.12	0.1	0.1	0.1	0.12	0.25	0.14	0.17	0.26	0.26	0.17	0.12	0.11	0.14
Разность	0.09	0.05	0.07	0.17	0.09	0.06	0.03	0.1	0.1	0.04	0.04	0.12	0.16	0.1	0.09	0.04	0.08	0.09	0.08

Концентрации без ДК (x_1) и с ДК (x_2) в каждой клетке расчетной сетки и для каждого часа 1 года. Точность расчета измеряется отношением к концентрации, рассчитанной на основе «истинной» (ручной) классификации территории (x_0) - *относительная концентрация*. Точность с ДК выше, чем без ДК, если относительная концентрация без ДК больше отличается от 1. Это отличие измеряется по абсолютной величине: мера пользы от ДК выражается величиной $|x_1/x_0-1|-|x_2/x_0-1|$. На *агрегированные по времени* величины ДК оказывает небольшое положительное влияние в смысле повышения точности— единицы процентов. Максимально возможная польза *на один момент времени* от ДК превышает максимальную меру «вреда» от ДК довольно значительно: до 30% в отдельных точках районов и до 16% в среднем по каждому району (а в среднем по всем районам — около 10%). Наибольший возможный выигрыш от ДК в один момент времени и в одной расчетной точке достигает 60%, а проигрыш — 50%.